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Abstract

We consider the problem of selecting grouped variables (factors) for accurate predic-

tion in regression. Such a problem arises naturally in many practical situations with the

multi-factor ANOVA problem as the most important and well known example. Instead

of selecting factors by stepwise backward elimination, we focus on estimation accuracy

and consider extensions of the LASSO, the LARS, and the nonnegative garrote for

factor selection. The LASSO, the LARS, and the nonnegative garrote are recently

proposed regression methods that can be used to select individual variables. We study

and propose efficient algorithms for the extensions of these methods for factor selection,

and show that these extensions give superior performance to the traditional stepwise

backward elimination method in factor selection problems. We study the similarities

and the differences among these methods. Simulations and real examples are used to

illustrate the methods.
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1 Introduction

In many regression problems we are interested in finding important explanatory factors in

predicting the response variable, where each explanatory factor may be represented by a

group of derived input variables. The most common example is the multi-factor ANOVA

problem, in which each factor may have several levels and can be expressed through a group

of dummy variables. The goal of ANOVA is often to select important main effects and

interactions for accurate prediction, which amounts to the selection of groups of derived

input variables. Another example is the additive model with polynomial or nonparametric

components. In both situations, each component in the additive model may be expressed

as a linear combination of a number of basis functions of the original measured variable.

In such cases the selection of important measured variables corresponds to the selection

of groups of basis functions. In both of these two examples, variable selection typically

amounts to the selection of important factors (groups of variables) rather than individual

derived variables, as each factor corresponds to one measured variable and is directly related

to the measurement cost. In this paper we propose and study several methods that produce

accurate prediction while selecting a subset of important factors.

Consider the general regression problem with J factors:

Y =
J∑

j=1

Xjβj + ǫ, (1.1)

where Y is a n × 1 vector, ǫ ∼ Nn(0, σ2I), Xj is a n × pj matrix corresponding to the jth

factor, and βj is a coefficient vector of size pj, j = 1, ..., J . To eliminate the intercept from

(1.1), throughout this paper, we center the response variable and each input variable so

that the observed mean is zero. To simplify description, we further assume that each Xj is

orthonormalized. That is, X ′
jXj = Ipj

, j = 1, ..., J . This can be done through Gram-Schmidt

orthonormalization, and different orthonormalizations corresponds to reparametrizing the

factor through different orthonormal contrasts. Denoting X = (X1, X2, ..., XJ) and β =

(β′
1, ..., β

′
J)′, equation (1.1) can be written as Y = Xβ + ǫ.

Each of the factors in (1.1) can be categorical or continuous. The traditional ANOVA

model is the special case in which all the factors are categorical and the additive model is

a special case in which all the factors are continuous. It is clearly possible to include both

categorical and continuous factors in (1.1).
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Our goal is to select important factors for accurate estimation in (1.1). This amounts to

deciding whether to set the vector βj to zero vector for each j. In the well studied special

case of multi-factor ANOVA model with balanced design, one can construct an ANOVA

table for hypothesis testing by partitioning the sums of squares. The columns in the full

design matrix X are orthogonal, thus the test results are independent of the order in which

the hypotheses are tested. More general cases of (1.1) including the ANOVA problem with

unbalanced design are appearing more and more frequently in practice. In such cases the

columns of X are no longer orthogonal, and there is no unique partition of the sums of

squares. The test result on one factor depends on the presence (or absence) of other factors.

Traditional approaches to model selection, such as the best subset selection and the stepwise

procedures can be used in model (1.1). In the best subset selection, an estimation accuracy

criterion, such as AIC or Cp, is evaluated on each candidate model and the model associated

with the smallest score is selected as the best model. This is impractical for even moderate

number of factors since the number of candidate models grows exponentially as the number

of factors increases. The stepwise methods are computationally more attractive, and can be

conducted with an estimation accuracy criterion or through hypothesis testing. However,

these methods often lead to locally optimal solutions rather than globally optimal solutions.

A commonly considered special case of (1.1) is when p1 = ... = pJ = 1. This is the

most studied model selection problem. A number of new model selection methods have been

introduced for this problem in recent years (George and McCulloch, 1993; Foster and George,

1994; Breiman, 1995; Tibshirani, 1996; George and Foster, 2000; Fan and Li, 2001; Shen

and Ye, 2002; and Efron, Johnston, Hastie and Tibshirani, 2004). In particular, Breiman

(1995) showed that the traditional subset selection methods are not satisfactory in terms

of prediction accuracy and stability, and proposed the nonnegative garrote which is shown

to be more accurate and stable. Tibshirani (1996) proposed the popular LASSO, which is

defined as:

β̂LASSO(λ) = arg min
β

(‖Y − Xβ‖2 + λ‖β‖ℓ1), (1.2)

where λ is a tuning parameter, and ‖·‖ℓ1 stands for the vector ℓ1 norm. The ℓ1 norm penalty

induces sparsity in the solution. Efron et. al. (2004) proposed the least angle regression

(LARS) and showed that the LARS and the LASSO are closely related. These methods

proceed in two steps. First a solution path indexed by certain tuning parameter is built.
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Then the final model is selected on the solution path by cross validation or using a criterion

such as the Cp. As shown in Efron et. al. (2004), the solution paths of the LARS and the

LASSO are piecewise linear, and thus can be computed very efficiently. This gives the LARS

and the LASSO tremendous computational advantages when compared with other methods.

Rosset and Zhu (2004) studied several related piecewise-linear-solution-path algorithms.

While the LASSO and the LARS enjoy great computational advantages and excellent

performance, they are designed for selecting individual input variables, not for general factor

selection in (1.1). When directly applied to model (1.1), they tend to make selection based

on the strength of individual derived input variable rather than the strength of groups of

input variables, often resulting in selecting more factors than necessary. Another drawback

of using the LASSO and the LARS in (1.1) is that the solution depends on how the factors

are orthonormalized. That is, if any factor Xj is reparametrized through a different set

of orthonormal contrasts, we may get a different set of factors in the solution. This is

undesirable since our solution to a factor selection and estimation problem should not depend

on how the factors are represented. In this paper we consider the extensions of the LASSO

and the LARS for factor selection in (1.1), which we call group LASSO and group LARS.

We show these natural extensions improve over the LASSO and LARS in terms of factor

selection, and enjoys superior performance to that of traditional methods for factor selection

in model (1.1). We study the relationship between the group LASSO and the group LARS,

and show that they are equivalent when the full design matrix X is orthogonal, but can be

different in more general situations. In fact, a somewhat surprising result is that the solution

path of the group LASSO is generally not piecewise linear while the solution path of the

group LARS is. We also consider a group version of the nonnegative garrote. We show that

the nonnegative garrote has a piecewise linear solution path, and we propose a new efficient

algorithm for computing the nonnegative garrote solution path. We compare these factor

selection methods via simulations and a real example.

In order to select the final models on the solution paths of the group selection methods,

we introduce an easily computable Cp criterion. The form of the criterion is derived in

the special case of orthogonal design matrix, but has a reasonable interpretation in general.

Simulations and real examples show that the Cp criterion works very well.

The later sections are organized as follows. We introduce the group LASSO, the group
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LARS, and the group nonnegative garrote in Sections 2-4. In Section 5 we consider the

connection between the three algorithms. Section 6 is on the selection of tuning parameters.

Simulation and a real example are given in Section 7 and 8. A summary and discussions are

given in Section 9. Technical proofs are relegated to the appendix.

2 Group LASSO

For a vector η ∈ Rd, d ≥ 1, and a symmetric d by d positive definite matrix K, we denote

||η||K = (η′Kη)
1/2

.

We write ||η|| = ||η||Id
for brevity. Given positive definite matrices K1, . . . ,KJ , the group

LASSO estimate is defined as the solution to

1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
Y −

J∑

j=1

Xjβj

∣∣∣∣∣∣

∣∣∣∣∣∣

2

+ λ
J∑

j=1

||βj||Kj
, (2.1)

where λ ≥ 0 is a tuning parameter. Bakin (1999) proposed (2.1) as an extension of the

LASSO for selecting groups of variables and proposed a computational algorithm. It is clear

that (2.1) reduces to the LASSO when p1 = ... = pJ = 1. The penalty function used in

(2.1) is intermediate between the ℓ1 penalty used in the LASSO and ℓ2 penalty used in ridge

regression. This is illustrated in Figure 1 in the case that all Kj’s are identity matrices.

Consider a case in which there are two factors, and the corresponding coefficients are a 2-

vector β1 = (β11, β12)
′ and a scalar β2. The top panels of Figure 1 depict the contour of the

penalty functions. The leftmost panel corresponds to the ℓ1 penalty |β11| + |β12| + |β2| = 1,

the central panel corresponds to ||β1|| + |β2| = 1, and the rightmost panel corresponds to

||(β′
1, β2)

′|| = 1. The intersections of the contours with planes β12 = 0 (or β11 = 0), β2 = 0,

and β11 = β12, are shown in the next three rows of Figure 1. As shown in Figure 1, the

ℓ1 penalty treats the three coordinate directions differently from other directions, and this

encourages sparsity in individual coefficients. The ℓ2 penalty treats all directions equally,

and does not encourage sparsity. The group LASSO encourages sparsity at the factor level.

There are many reasonable choices for the kernel matrices Kj’s. An obvious choice would

be Kj = Ipj
, j = 1, ..., J . In the implementation of the group LASSO in this paper, we choose

to set Kj = pjIpj
. Notice that under both choices the solution given by the group LASSO
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Figure 1: The ℓ1 penalty (left panels), Group LASSO penalty (central panels) and ℓ2 penalty

(right panels)
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does not depend on the particular sets of orthonormal contrasts that is used to represent the

factors. We prefer the latter since in the ANOVA with balanced design case the resulting

solution is similar to the solution given by ANOVA tests. This will become clear in later

discussions.

Bakin (1999) proposed a sequential optimization algorithm for (2.1). In this paper, we

introduce a more intuitive approach. Our implementation of the group LASSO is an exten-

sion of the shooting algorithm (Fu, 1999) for the LASSO. It is motivated by the following

proposition, which is a direct consequence of the Karush-Kuhn-Tucker conditions.

Proposition 2.1 Let Kj = pjIpj
, j = 1, ..., J . A necessary and sufficient condition for

β = (β′
1, ..., β

′
J)′ to be a solution to (2.1) is

−X ′
j(Y − Xβ) +

λ
√

pjβj

||βj ||
= 0 ∀βj 6= 0 (2.2)

∣∣∣
∣∣∣−X ′

j(Y − Xβ)
∣∣∣
∣∣∣ ≤ λ

√
pj ∀βj = 0 (2.3)

Recall that X ′
jXj = Ipj

. It can be easily verified that the solution to (2.2) and (2.3) is

βj =

(

1 − λ
√

pj

||Sj ||

)

+

Sj, (2.4)

where Sj = X ′
j(Y − Xβ−j), with β−j = (β′

1, ..., β
′
j−1,0

′, β′
j+1, ..., β

′
J) . The solution to (2.1)

can therefore be obtained by iteratively applying (2.4) to j = 1, . . . , J .

The algorithm is found to be very stable and usually reaches reasonable convergence

tolerance within a few iterations. However, the computational burden increases dramatically

as the number of predictors increases.

3 Group LARS

The LARS (Efron et. al., 2004) was proposed for variable selection in (1.1) with p1 = ... =

pJ = 1 and the algorithm can be described roughly as follows. Starting with all coefficients

equal to zero, the LARS finds the input variable that is most correlated with the response

variable and proceeds on this direction. Instead of taking a full step towards the projection

of Y on the variable, as would be done in a greedy algorithm, the LARS only takes the

largest step possible in this direction until some other input variable has as much correlation
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with the current residual. At this point the projection of the current residual on the space

spanned by the two variables has equal angle with the two variables, and the LARS proceeds

in this direction until a third variable “earns its way into the most correlated set”. The LARS

then proceeds in the direction of the projection of the current residual on the space spanned

by the three variables, a direction that has equal angle with the three input variables, until

a fourth variable enters, etc. The great computational advantage of the LARS comes from

the fact that the LARS path is piecewise linear.

When all the factors in (1.1) have the same number of derived input variables (p1 =

... = pJ , though they may not be equal to one), a natural extension of the LARS for factor

selection that retains the piecewise linear property of the solution path is the following.

Define the angle θ(r,Xj) between a n-vector r and a factor represented by Xj as the angle

between the vector r and the space spanned by the column vectors of Xj. It is clear that

this angle does not depend on the set of orthonormal contrasts representing the factor, and

that it is the same as the angle between r and the projection of r in the space spanned by

the columns of Xj. Therefore cos2(θ(r,Xj)) is the proportion of the total variation sum of

square in r that is explained by the regression on Xj, i.e. the R2 when r is regressed on Xj.

Since Xj is orthonormal, we have cos2(θ(r,Xj)) = ‖X ′
jr‖2/‖r‖2. Starting with all coefficient

vectors equal to zero vector, the Group LARS finds the factor (say Xj1) that has the smallest

angle with Y (i.e. ‖X ′
j1

Y ‖2 is the largest), and proceeds in the direction of the projection

of Y on the space spanned by the factor until some other factor (say Xj2) has as small an

angle with the current residual. That is,

‖X ′
j1

r‖2 = ‖X ′
j2

r‖2, (3.1)

where r is the current residual. At this point the projection of the current residual on the

space spanned by the columns of Xj1 and Xj2 has equal angle with the two factors, and

the Group LARS proceeds in this direction. Notice that as the Group LARS marches on,

the direction of projection of the residual on the space spanned by the two factors does not

change. The Group LARS continues on this direction until a third factor Xj3 has the same

angle with the current residual as the two factors with the current residual. The Group

LARS then proceeds in the direction of the projection of the current residual on the space

spanned by the three factors, a direction that has equal angle with the three factors, until a

fourth factor enters, etc.
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When pj’s are not all equal, some adjustment to the above Group LARS algorithm is

needed to take into account of the different number of derived input variables in the groups.

Instead of choosing the factors based on the angle of the residual r with the factors Xj, or

equivalently, on ‖X ′
jr‖2, we can base the choice on ‖X ′

jr‖2/pj. There are other reasonable

choices of the scaling, we have taken this particular choice in the implementation in this

paper since it gives similar results to the ANOVA test in the special case of ANOVA with

balanced design.

To sum up, our group version of the LARS algorithm proceeds in the following way:

Algorithm – Group LARS

(1) Start from β[0] = 0, k = 1 and r[0] = Y

(2) Compute the current “most correlated set”

A1 = arg max
j

||X ′
jr

[k−1]||2/pj

(3) Compute the current direction γ which is a p =
∑

pj dimensional vector with γAc
k

= 0

and

γAk
=
(
X ′

Ak
XAk

)−
X ′

Ak
r[k−1],

where XAk
denotes the matrix comprised of the columns of X corresponding to Ak.

(4) For every j /∈ Ak, compute how far the group LARS will progress in direction γ before

Xj enters the most correlated set. This can be measured by a αj ∈ [0, 1] such that

||X ′
j(r

[k−1] − αjXγ)||2/pj = ||X ′
j′(r

[k−1] − αjXγ)||2/pj′, (3.2)

where j′ is arbitrarily chosen from Ak.

(5) If Ak 6= {1, . . . , J}, let α = minj /∈Ak
αj ≡ αj∗ and update Ak+1 = A∪ {j∗}. Otherwise,

set α = 1.

(6) Update β[k] = β[k−1] + αγ, r[k] = Y − Xβ[k] and k = k + 1. Go back to step (3) until

α = 1.

Note that (3.2) is a quadratic equation of αj and can be solved easily. Since j′ is from

the current most correlated set, the left side of (3.2) is less than the right hand side when
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αj = 0. On the other hand, by the definition of γ, the right hand side is 0 when αj = 1.

Therefore, at least one of the solutions to (3.2) must lie between 0 and 1. In other words,

αj in Step (4) is always well defined. The algorithm stops after α = 1, at which time the

residual is orthogonal to the columns of X. That is, the solution after the final step is the

ordinary least square estimate. With probability one, this is reached in J steps.

4 Group Nonnegative Garrote

Another method for variable selection in (1.1) with p1 = . . . = pJ = 1 is the nonnegative

garrote proposed by Breiman (1995). The nonnegative garrote estimate of βj is the least

square estimate β̂LS
j scaled by a constant dj(λ) given by

d(λ) = arg min
d

1

2
||Y − Zd||2 + λ

J∑

j=1

dj subject to dj ≥ 0,∀j, (4.1)

where Z = (Z1, . . . , ZJ) and Zj = Xjβ̂
LS
j .

The nonnegative garrote can be naturally extended to select factors in (1.1). In this case

β̂LS
j is a vector, and we scale every component of vector β̂LS

j by the same constant dj(λ). To

take into account the different number of derived variables in the factor, we define d(λ) as

d(λ) = arg min
d

1

2
||Y − Zd||2 + λ

J∑

j=1

pjdj subject to dj ≥ 0,∀j. (4.2)

The (group) nonnegative garrote solution path can be constructed by solving the quadratic

programming problem (4.2) for all λ′s, as done in Breiman (1995). We show that the solution

path of the nonnegative garrote is piecewise linear, and use this to construct a more efficient

algorithm of building the (group) nonnegative garrote solution path. The following algo-

rithm is quite similar to the modified LARS algorithm for the LASSO, with a complicating

factor being the nonnegative constraints in (4.2).

Algorithm – Group Nonnegative Garrote

(1) Start from d[0] = 0, k = 1 and r[0] = Y

(2) Compute the current active set

C1 = arg max
j

Z ′
jr

[k−1]/pj
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(3) Compute the current direction γ, which is a p dimensional vector defined by γCc
k

= 0

and

γCk
=
(
Z ′

Ck
ZCk

)−
Z ′

Ck
r[k−1]

(4) For every j /∈ Ck, compute how far the group nonnegative garrote will progress in

direction γ before Xj enters the active set. This can be measured by a αj such that

Z ′
j

(
r[k−1] − αjZγ

)
/pj = Z ′

j′

(
r[k−1] − αjZγ

)
/pj′ (4.3)

where j′ is arbitrarily chosen from Ck.

(5) For every j ∈ Ck, compute αj = min(βj, 1) where βj = −d
[k−1]
j /γj, if nonnegative,

measures how far the group nonnegative garrote will progress before dj becomes zero.

(6) If αj ≤ 0, ∀j or minj:αj>0{αj} > 1, set α = 1. Otherwise, denote α = minj:αj>0{αj} ≡
αj∗ . Set d[k] = d[k−1] + αγ. If j∗ /∈ Ck, update Ck+1 = Ck ∪ {j∗}; else update Ck+1 =

Ck − {j∗}.

(7) Set r[k] = Y − Zd[k] and k = k + 1. Go back to step (3) until α = 1.

Theorem 4.1 Under the “one at a time” condition discussed below, the trajectory of this

algorithm coincides with (group) nonnegative garrote solution path.

The same condition as we assumed in Theorem 4.1, referred to as “one at a time”, was

used in deriving the connection between the LASSO and the LARS by Efron et. al (2004).

With the current notation, the condition states that j∗ in Step (6) is uniquely defined. This

assumption basically means that (i) the addition occurs only for one factor a time at any

stage of the above algorithm; (ii) no factor vanishes at the time of addition; and (iii) no

two factors vanishes simultaneously. This is generally true in practice and can always be

enforced by slightly perturbing the response. For more detailed discussions, the readers are

referred to Efron et. al. (2004).

Since
∑

j

Z ′
jY = (βLS)′X ′Y = Y ′X(X ′X)−1X ′Y > 0,

we have maxj Z ′
jr

[k−1]/pj > 0 in Step (2). A careful examination of the proof of Theorem

4.1 reveals that maxj Z ′
jr

[k−1]/pj > 0 is monotonically decreasing as the algorithm progresses
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and Ck maintains the collection of factors which maximize Z ′
jr

[k−1]/pj. The stopping rule in

Step (7) makes sure that the algorithm ends when maxj Z ′
jr

[k−1]/pj = 0.

Breiman (1995) conjectured that the models produced by the nonnegative garrote are

nested in that the model corresponding to a smaller λ always contains the model corre-

sponding to a larger λ. This amounts to stating that j∗ ∈ Ck never takes place in Step (6).

However, we found this conjecture not true although j∗ ∈ Ck happens only very rarely in

our simulation. A counterexample can be obtained from the authors.

5 Similarities and Differences

Efron et. al. (2004) showed that there is a close connection between the LASSO and the

LARS, and the LASSO solution can be obtained with a slightly modified LARS algorithm.

It is of interest to study whether a similar connection exists between the group versions

of these methods. In this section, we compare the Group LASSO, the Group LARS and

the group nonnegative garrote, and pinpoint the similarities and differences among these

procedures.

We start with the simple special case where the design matrix X = (X1, ..., XJ) is or-

thonormal. The ANOVA with balanced design is of this situation. For example, a two-way

ANOVA with number of levels I and J can be formulated as (1.1) with p1 = I−1, p2 = J−1,

and p3 = (I − 1)(J − 1) corresponding to the two main effects and one interaction. The

design matrix X would be orthonormal in the balanced design case.

From (2.4), it is easy to see that when X is orthonormal, the group LASSO estimator

with tuning parameter λ can be given as

β̂j =



1 −
λ
√

pj∣∣∣
∣∣∣X ′

jY
∣∣∣
∣∣∣





+

X ′
jY, j = 1, ..., J. (5.1)

As λ descends from +∞ to 0, the group LASSO follows a piecewise linear solution path

with change points at λ = ||X ′
jY ||/√pj, j = 1, . . . , J . It is easy to see that this is identical

to the solution path of the group LARS when X is orthonormal. On the other hand, when

X is orthonormal, the nonnegative garrote solution is

β̂j =

(

1 − λpj

||X ′
jY ||2

)

+

X ′
jY, (5.2)
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which is different from the solution path of the LASSO or the LARS.

Now we turn to the general case. While the group LARS and the group nonnegative

garrote have piecewise linear solution paths, it turns out that in general the solution path

of the group LASSO is not piecewise linear.

Theorem 5.1 The solution path of the group LASSO is piecewise linear if and only if any

group LASSO solution β̂ can be written as β̂j = cjβ
LS
j , j = 1, . . . , J for some scalars

c1, . . . , cJ .

The condition for the group LASSO solution path to be piecewise linear as stated above

is clearly satisfied if each group has only one predictor or if X is orthonormal. But in

general, this condition is rather restrictive and is seldom met in practice. This precludes the

possibility of the fast construction of solution path based on piecewise linearity for the group

LASSO. Thus, the group LASSO is computationally more expensive in large scale problems

than the group LARS and the group nonnegative garrote, whose solution paths can be built

very efficiently by taking advantage of their piecewise linear property.

To illustrate the similarities and differences among the three algorithms, we consider a

simple example with 2 covariates X1, X2 generated from a bivariate normal distribution with

var(X1) = var(X2) = 1 and cov(X1, X2) = 0.5. The response is then generated as

Y =
(
X3

1 + X2
1 + X1

)
+
(

1

3
X3

2 − X2
2 +

2

3
X2

)
+ ǫ,

where ǫ ∼ N(0, 32). We apply the group LASSO, the group LARS and the group non-

negative garrote to the data. This is done by first centering the input variables and the

response variable and orthonormalizing the design matrix corresponding to the same factor,

then applying the algorithms given in Sections 2-4, and finally transforming the estimated

coefficients back to the original scale. The following plot gives the resulting solution paths.

Each line in the plot corresponds to the trajectory of an individual regression coefficient.

The path of the estimated coefficients from the same group are represented in the same color.

The x-axis in Figure 2 is the fraction of progress measuring how far the estimate has

marched on the solution path. More specifically, for the group LASSO,

fraction(β) =

∑
j
√

pj||βj ||
∑

j
√

pj||βLS
j || .
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Figure 2: Group LARS (left panel), Group LASSO (central panel) and group nonnegative

garrote solution paths (right panel)

For the group nonnegative garrote,

fraction(d) =
∑

j

pjdj/
∑

j

pj.

For the group LARS,

fraction(β) =

∑K
k=1

(∑J
j=1

√
pj||β[k]

j − β
[k−1]
j ||

)
+
∑J

j=1
√

pj||βj − β
[K]
j ||

∑J
k=1

(∑J
j=1

√
pj||β[k]

j − β
[k−1]
j ||

) ,

where β is an estimate between β[K] and β[K+1]. The fraction of progress amounts to a one-

to-one map from the solution path to the unit interval [0, 1]. Using the fraction introduced

above as x-scale, we are able to preserve the piecewise linearity of the group LARS and

nonnegative garrote solution paths.

Obvious nonlinearity is noted in the group LASSO solution path. It is also interesting

to notice that even though the group LASSO and group LARS are different, their solution

paths look quite similar in this example. According to our experience, this is usually true

as long as maxj pj is not very big.
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6 Tuning

Once the solution path of the Group LASSO, the Group LARS, or the Group nonnegative

garrote is constructed, we choose our final estimate in the solution path according to pre-

diction accuracy, which depends on the unknown parameters and needs to be estimated. In

this section we introduce a simple approximate Cp type criterion to select the final estimate

on the solution path.

It is well known that in Gaussian regression problems, for an estimate µ̂ of µ = E(Y |X),

an unbiased estimate of the true risk E(||µ̂ − µ||2/σ2) is

Cp(µ̂) =
||Y − µ̂||2

σ2
− n + 2dfµ,σ2 , (6.1)

where

dfµ,σ2 =
n∑

i=1

cov(µ̂i, Yi)/σ
2. (6.2)

Since the definition of the degrees of freedom involves the unknowns, in practice, it is often

estimated through bootstrap (Efron et. al., 2004) or some data perturbation methods (Shen

and Ye, 2002). To reduce the computation cost, Efron et. al. (2004) introduced a simple

explicit formula for the degrees of freedom of the LARS which they show is exact in the case

of orthonormal design and more generally, when a positive cone condition is satisfied. Here

we take the strategy of deriving simple formulas in the special case of orthonormal design,

and then test the formulas as approximations in more general case through simulations.

The same strategy has also been used in the original LASSO paper (Tibshirani, 1996). We

propose the following approximations to df . For the group LASSO,

d̃f(µ̂(λ) ≡ Xβ) =
∑

j

I(||βj || > 0) +
∑

j

||βj||
||βLS

j ||(pj − 1); (6.3)

for the group LARS,

d̃f(µ̂k ≡ Xβ[k]) =
∑

j

I(||β[k]
j || > 0) +

∑

j




∑

l<k ||β[l+1]
j − β

[l]
j ||

∑
l<J ||β[l+1]

j − β
[l]
j ||



 (pj − 1); (6.4)

and for the nonnegative garrote,

d̃f(µ̂(λ) ≡ Zd) = 2
∑

j

I(dj > 0) +
∑

j

dj(pj − 2). (6.5)
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Similar to Efron et. al. (2004), for the group LARS we confine ourselves to the models

corresponding to the turning points on the solution path. It is worth noting that if each

factor contains only one variable, formula (6.3) reduces to the approximate degrees of freedom

given in Efron et. al. (2004).

Theorem 6.1 Consider model (1.1) with the design matrix X being orthonormal. For any

estimate on the solution path of the group LASSO, the group LARS or the group nonnegative

garrote, we have df = E(d̃f).

Empirical evidence suggests that these approximations work fairly well for correlated

predictors. In our experience, the performance of this approximate Cp criterion is generally

comparable to that of five fold cross validation, and is sometimes better. Notice five fold

cross validation is computationally much more expensive.

7 Simulation

In this section, we compare the prediction performance of the group LARS, the group

LASSO, and the group nonnegative garrote, as well as that of the LARS/LASSO, the

ordinary least squares estimate, and the traditional backward stepwise method based on

AIC. The backward stepwise method has commonly been used in the selection of grouped

variables, with the multi-factor ANOVA as a well known example.

Four models were considered in the simulations. In the first we consider fitting an additive

model involving categorical factors. In the second we consider fitting an ANOVA model with

all the two way interactions. In the third we fit an additive model of continuous factors.

Each continuous factor is represented through a third order polynomial. The last model is

an additive model involving both continuous and categorical predictors. Each continuous

factor is represented by a third order polynomial.

(I) Fifteen latent variables Z1, . . . , Z15 were first simulated according to a centered mul-

tivariate normal distribution with covariance between Zi and Zj being 0.5|i−j|. Then

Zi is trichotomized as 0, 1, 2 if it is smaller than Φ−1(1/3), larger than Φ−1(2/3) or in

between. The response Y was then simulated from

Y = 1.8I (Z1 = 1)−1.2I (Z1 = 0)+I (Z3 = 1)+0.5I (Z3 = 0)+I (Z5 = 1)+I (Z5 = 0)+ǫ,

17



where I(·) is the indicator function and the regression noise ǫ is normally distributed

with variance σ2 chosen so that the signal to noise ratio is 1.8. 50 observations were

collected for each run.

(II) In this example, both main effects and second order interactions were considered. Four

categorical factors Z1, Z2, Z3 and Z4 were first generated as in (I). The true regression

equation is

Y = 3I(Z1 = 1) + 2I(Z1 = 0) + 3I(Z2 = 1) + 2I(Z2 = 0) + I(Z1 = 1, Z2 = 1)

+1.5I(Z1 = 1, Z2 = 0) + 2I(Z1 = 0, Z2 = 1) + 2.5I(Z1 = 0, Z2 = 0) + ǫ,

with signal to noise ratio 3. 100 observations were collected for each simulated dataset.

(III) This example is a more sophisticated version of the example from Section 5. Sixteen

random variables Z1, . . . , Z16 and W were independently generated from a standard

normal distribution. The covariates is then defined as Xi = (Zi+W )/
√

2. The response

follows

Y =
(
X3

3 + X2
3 + X3

)
+
(

1

3
X3

6 − X2
6 +

2

3
X6

)
+ ǫ,

where ǫ ∼ N(0, 22). 100 observations were collected for each run.

(IV) Twenty covariates X1, . . . , X20 were generated in the same fashion as in (III). Then

the last ten covariates X11, . . . , X20 were trichotomized as in the first two models. This

gives us a total of 10 continuous covariates and 10 categorical covariates. The true

regression equation is given by

Y =
(
X3

3 + X2
3 + X3

)
+
(

1

3
X3

6 − X2
6 +

2

3
X6

)
+ 2I(X11 = 0) + I(X11 = 1) + ǫ,

where ǫ ∼ N(0, 22). For each run, we collected 100 observations.

For each dataset, the group LARS (GLARS), the group LASSO (GLASSO), the group

nonnegative garrote (GGarrote), and the LARS (LARS) solution paths were computed. The

group LASSO solution path is computed by evaluating on 100 equally spaced λ′s between 0

and maxj ||X ′
jY ||/√pj. On each solution path, the performance of both the “oracle” estimate

which minimizes the true model error defined as

ME(β̂) = (β̂ − β)′E(X ′X)(β̂ − β),
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and the estimate with tuning parameter chosen by the approximate Cp was recorded. Also

reported is the performance of the the full least square estimate and the stepwise method.

Only main effects were considered except for the second model where second order interac-

tions are also included. Table 1 summarizes the model error, model sizes in terms of the

number of factors (or interaction) selected, and the CPU time consumed for constructing

for the solution path. The results reported in Table 1 are averages based on 200 runs. The

numbers in parentheses are standard deviations based on the 200 runs.

Several observations can be made from Table 1. In all four examples, the models selected

by the LARS are larger than those selected by other methods (other than the full least

squares). This is to be expected since the LARS selects individual derived variables, and

once a derived variable is included in the model, the corresponding factor is present in the

model. Therefore the LARS often produces unnecessarily large models in factor selection

problems. The models selected by the stepwise method are smaller than those selected by

other methods. The models selected by the group methods are similar in size, though the

group nonnegative garrote seems to produce slightly smaller models. The group nonnegative

garrote is fastest to compute, followed by the group LARS, the stepwise method, and the

LARS. The group LASSO is the slowest to compute.

To compare the performance of the group methods with that of the other methods, we

conducted head to head comparisons by performing paired t-tests at 0.05 level. The p-values

of the paired t-tests (two sided) are given in Table 2. In all four examples, the group LARS

(with Cp) and the group LASSO (with Cp) perform significantly better than the traditional

stepwise method. The group nonnegative garrote performs significantly better than the

stepwise method in three of the four examples, but the stepwise method is significantly better

than the group nonnegative garrote in Example 2. In Example 3, the difference among the

three group methods and the LARS is not significant. In examples 1, 2 and 4, the group

LARS and the group LASSO perform significantly better than the LARS. The performance

of the group nonnegative garrote and that of the LARS are not significantly different in

examples 1, 2 and 3, but the nonnegative garrote significantly outperform the LARS in

example 4. We also report in Table 1 the minimal estimation error over the solution paths

for each of the group methods. This is only computable in simulations, not real example.

It represents the estimation error of the ideal (oracle) estimator which minimizes the true
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model error on the solution path, and is a lower bound to the estimation error of any model

picked by data adaptive criteria on the solution path.

8 Real Example

We re-examine the birthweight dataset from Hosmer and Lemeshow (1989) with the group

methods. The birthwt dataset records the birthweights of 189 babies and 8 predictors con-

cerning the mom. Among the eight predictors, 2 are continuous: mother’s age in years,

mother’s weight in pounds at last menstrual period; and 6 are categorical: mother’s race

(white, black or other), smoking status during pregnancy (yes or no), number of previous

premature labors (0, 1 or ≥2), history of hypertension (yes or no), presence of uterine ir-

ritability (yes or no), number of physician visits during the first trimester (0, 1, 2 or ≥3).

The data were collected at Baystate Medical Center, Springfield, Massachusetts during 1986.

Preliminary analysis suggests that nonlinear effects of both mother’s age and weight may

exist. To incorporate this into analysis, we model both effects using third order polynomials.

For validation purpose, we randomly selected three quarters of the observations (151

cases) for model fitting, and reserve the rest of the data as the test set. Figure 3 gives the

solution paths of the group LARS, the group LASSO, and the group nonnegative garrote.

The x-axis is defined as before and the y-axis represents the group score defined as the ℓ2

norm of the fitted value for a factor. As Figure 3 shows, the solution paths are quite similar.

All these methods suggest that number of physician visits should be excluded from the final

model. In addition to this variable, the backward stepwise method excludes two more factors:

mother’s weight and history of hypertension. The prediction errors of the selected models

on the test set are reported Table 3. The group LARS, the group LASSO, and the group

nonnegative garrote all perform better than the stepwise method. The performance of the

LARS depends on how the categorical factors are represented, therefore the LARS was not

included in this study.

9 Discussion

The group LARS, the group LASSO, and the group nonnegative garrote are natural exten-

sions of the LARS, the LASSO and the nonnegative garrote. While the LARS, the LASSO
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GLARS GGarrote GLASSO LARS LS
Oracle Cp Oracle Cp Oracle Cp Oracle Cp FULL STEP

Model I
Model Error 0.83 1.31 0.99 1.79 0.82 1.31 1.17 1.72 4.72 2.39

(0.4) (1.06) (0.62) (1.34) (0.38) (0.95) (0.47) (1.17) (2.28) (2)
Number of factors 7.79 8.32 5.41 7.63 8.48 8.78 10.14 10.44 15 5.94

(1.84) (2.94) (1.82) (3.05) (2.05) (3.4) (2.5) (3.07) (0) (2.29)
CPU Time 168.2 97 2007.3 380.8 1.35 167.05

(msec) (19.82) (13.6) (265.24) (40.91) (3.43) (29.9)
Model II

Mean ME 0.09 0.11 0.13 0.17 0.09 0.12 0.13 0.17 0.36 0.15
(0.04) (0.05) (0.08) (0.13) (0.04) (0.07) (0.05) (0.11) (0.14) (0.13)

Mean Size 5.67 5.36 5.68 5.83 6.72 6.29 8.46 8.03 10 4.15
(1.16) (1.62) (1.81) (2.12) (1.42) (2.03) (1.09) (1.39) (0) (1.37)

CPU Time 126.85 83.85 2692.25 452 2.1 99.85
(msec) (15.35) (12.63) (429.56) (32.95) (4.08) (21.32)

Model III
Mean ME 1.71 2.13 1.47 2.02 1.6 2.04 1.68 2.09 7.86 2.52

(0.82) (1.14) (0.93) (2.1) (0.78) (1.15) (0.88) (1.4) (3.21) (2.22)
Mean Size 7.45 7.46 4.87 4.44 8.88 7.94 11.05 9.34 16 4.3

(1.99) (2.99) (1.47) (3.15) (2.42) (3.73) (2.58) (3.37) (0) (2.11)
CPU Time 124.4 71.9 3364.2 493.2 2.15 195

(msec) (9.06) (7.39) (562.5) (15.78) (4.12) (18.51)
Model IV

Mean ME 1.89 2.14 1.68 2.06 1.78 2.08 1.92 2.25 6.01 2.44
(0.73) (0.87) (0.84) (1.21) (0.7) (0.92) (0.79) (0.99) (2.06) (1.64)

Mean Size 10.84 9.75 6.43 6.08 12.05 10.26 14.34 12.08 20 5.73
(2.3) (3.24) (1.97) (3.54) (2.86) (3.81) (2.95) (3.83) (0) (2.26)

CPU Time 159.5 88.4 5265.55 530.6 2.2 305.4
(msec) (8.67) (8.47) (715.28) (30.68) (4.15) (23.87)

Table 1: Results for the four models considered in the simulation. Reported are the average model error, average number

of factors in the selected model, and average computation time, over 200 runs, for the group LARS, the group nonnegative

garrote, the group LASSO, the LARS, the full least square estimator, and the stepwise method.
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Model I Model II Model III Model IV

LARS (Cp) STEP LARS (Cp) STEP LARS (Cp) STEP LARS (Cp) STEP

GLARS (Cp) 0.0000 0.0000 0.0000 0.0000 0.5829 0.0007 0.0162 0.0017

GGarrote (Cp) 0.3386 0.0000 0.5887 0.0003 0.4717 0.0000 0.0122 0.0000

GLASSO (Cp) 0.0000 0.0000 0.0000 0.0001 0.3554 0.0000 0.0001 0.0001

Table 2: The p-values of the paired t-tests comparing the estimation error of different meth-

ods.

GLARS (Cp) GGarrote (Cp) GLASSO (Cp) STEP

Prediction Error 609092.8 579413.6 610008.7 646664.1

Table 3: The test set prediction error of the models selected by the group LARS, the group

nonnegative garrote, the group LASSO, and the stepwise method.
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Figure 3: Solution path for the birthwight data
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and the nonnegative garrote are very successful in selecting individual variables, their group

counterparts are more suitable for factor selection. These new group methods can be used in

ANOVA problems with general design, and tend to outperform the traditional stepwise back-

ward elimination method. The group LASSO enjoys excellent performance, but as shown in

Section 5, its solution path in general is not piecewise linear and therefore requires intensive

computation in large scale problems. The group LARS proposed in Section 3 has comparable

performance to that of the group LASSO, and can be computed quickly due to its piecewise

linear solution path. The group nonnegative garrote can be computed the fastest among

the methods considered in this paper, through a new algorithm taking advantage of the

piecewise linearity of its solution. However, due to its explicit dependence on the full least

squares estimates, in problems where the sample size is small relative to the total number of

variables, the nonnegative garrote may perform suboptimal. In particular, the nonnegative

garrote can not be directly applied to problems where the total number of variables exceeds

the sample size, whereas the other two group methods can.
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APPENDIX

Proof of Theorem 4.1 Karush-Kuhn-Tucker Theorem suggests that a necessary and sufficient

condition for a point d to be on the solution path of (4.2) is that there exists a λ ≥ 0 such

that for any j = 1, . . . , J ,

{−Z ′
j(Y − Zd) + λpj}dj = 0 (A.1)

−Z ′
j(Y − Zd) + λpj ≥ 0 (A.2)

dj ≥ 0 (A.3)

In the following we show that (A.1)-(A.3) are satisfied by any point on the solution path

constructed by the algorithm; and any solution to (A.1)-(A.3) for certain λ ≥ 0 is also on

the constructed solution path.
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We verify (A.1)-(A.3) for the solution path by induction. Obviously, they are satisfied

by d[0]. Now suppose that they hold for any point prior to d[k]. It suffices to show that they

are also true for any point between d[k] and d[k+1]. There are three possible actions at step

k: (i) a variable is added to active set: j∗ /∈ Ck; (ii) a variable is deleted from the active set:

j∗ ∈ Ck; and (iii) α = 1. It is easy to see that (A.1)-(A.3) will continue to hold for any point

between d[k] and d[k+1] if α = 1. Now we consider the other two possibilities.

First consider additions. Without loss of generality, assume that Ck − Ck−1 = {1}. Note

that a point between d[k] and d[k+1] can be expressed as dα ≡ d[k] + αγ, where α ∈ (0, α1]

and γ is a vector defined by γCc
k

= 0 and

γCk
= (Z ′

Ck
ZCk

)−1Z ′
Ck

r[k]. (A.4)

It is not hard to show that (A.1) and (A.2) are true for dα. It now suffices to check (A.3).

By the construction of the algorithm, it boils down to verify that γ1 > 0.

By the definition of Ck and Ck−1, we know that for any j ∈ Ck−1,

Z ′
jr

[k−1]/pj > Z ′
1r

[k−1]/p1 (A.5)

Z ′
jr

[k]/pj = Z ′
1r

[k]/p1 (A.6)

Therefore,

Z ′
1(r

[k−1] − r[k])/p1 < Z ′
j(r

[k−1] − r[k])/pj.

Because there exists a positive constant b such that r[k−1]−r[k] = bZCk−1
(Z ′

Ck−1
ZCk−1

)−1Z ′
Ck−1

r[k−1],

one concludes that

Z ′
1ZCk−1

(Z ′
Ck−1

ZCk−1
)−1Z ′

Ck−1
r[k−1]/p1 < Z ′

jZCk−1
(Z ′

Ck−1
ZCk−1

)−1Z ′
Ck−1

r[k−1]/pj.

Write s = (p1, . . . , p1, p2, . . . , p2, . . . , pJ , . . . , pJ)′. Since Z ′
Ck−1

r[k−1] = (Z ′
jr

[k−1]/pj)sCk−1
, we

have

Z ′
1ZCk−1

(Z ′
Ck−1

ZCk−1
)−1sCk−1

< p1. (A.7)

Together with (A.4),

γ1 =
{p1 − Z ′

1ZCk−1

(
Z ′

Ck−1
ZCk−1

)−1
sCk−1

}Z ′
jr

[k]

{Z ′
1Z1 − Z ′

1ZCk−1

(
Z ′

Ck−1
ZCk−1

)−1
Z ′

Ck−1
Z1}pj

> 0, (A.8)

Now let us consider the case of deletion. Without loss of generality, assume that Ck−1 −
Ck = {1}. In this case, a point between d[k] and d[k+1] can still be expressed as dα ≡ d[k] +αγ,
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where α ∈ (0, α1] and γ is still defined by (A.4). It is readily to show that (A.1) and (A.3)

are true with λ = Z ′
j(Y −Zdα)/pj where j is arbitrarily chosen from Ck. It suffices to verify

(A.2). By the construction of the solution path, it suffices to show that (A.2) holds for j = 1.

Note that any point between d[k−1] and d[k] can be written as d[k−1] + cγ̃, where c > 0

and γ̃ is given by γ̃Cc
k−1

= 0 and

γ̃Ck−1
= (Z ′

Ck−1
ZCk−1

)−1Z ′
Ck−1

r[k−1]. (A.9)

Clearly, γ̃1 < 0. Similar to (A.8), we have

γ̃1 =
{p1 − Z ′

1ZCk

(
Z ′

Ck
ZCk

)−1
sCk

}Z ′
jr

[k]

{Z ′
1Z1 − Z ′

1ZCk

(
Z ′

Ck
ZCk

)−1
Z ′

Ck
Z1}pj

. (A.10)

where j is arbitrarily chosen from Ck. Therefore,

Z ′
1ZCk

(
Z ′

Ck
ZCk

)−1
sCk

= (pj/Z
′
jr

[k])Z ′
1Zγ < p1.

In other words, Z ′
1Zγ/p1 < Z ′

jr
[k]/pj = Z ′

jZγ/pj. Since Z ′
1r

[k]/p1 = Z ′
jr

[k]/pj, we conclude

that Z ′
1(Y − Zdα)/p1 < Z ′

j(Y − Zdα)/pj = λ.

Next, we need to show that for any λ ≥ 0, the solution to (A.1)-(A.3) is on the solution

path. By the continuity of the solution path and the uniqueness of the solution to (4.2), it

is evident that for any λ ∈ [0,max Z ′
jY/pj], the solution to (A.1)-(A.3) is on the path. The

proof is now completed by the fact that for any λ > maxZ ′
jY/pj, the solution to (A.1)-(A.3)

is 0 which is also on the solution path.

Proof of Theorem 5.1 The “if” part is true because in this case, (2.1) is equivalent to the

LASSO formulation for c′js; and the solution path of the LASSO is piecewise linear. The

proof of the “only if” part relies on the following lemma.

Lemma A.1 Suppose that β̂ and β̃ are two distinct points on the group LASSO solution

path. If any point on the straight line connecting β̂ and β̃ is also on the group LASSO

solution path, then β̂j = cjβ̃j, j = 1, . . . , J for some scalars c1, . . . , cJ .

Now suppose that the group LASSO solution path is piecewise linear with change points

at β[0] = 0, β[1], . . . , β[M ] = βLS. Certainly the conclusion of Theorem 5.1 holds for β[M ].

Using Lemma A.1, the proof can then be completed by induction.
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Proof of Lemma A.1 For any estimate β, define its active set by {j : βj 6= 0}. Without loss

of generality, assume that the active set stays the same for αβ̂ +(1−α)β̃ as α increases from

0 to 1. Denote the set by E . More specifically, for any α ∈ [0, 1],

E = {j : αβ̂j + (1 − α)β̃j 6= 0}.

Suppose that αβ̂ + (1 − α)β̃ is a group LASSO solution with tuning parameter λα. For an

arbitrarily j ∈ E , write

Cα =
λα

√
pj

||αβ̂j + (1 − α)β̃j||
.

From (2.2),

X ′
j

[
Y − X{αβ̂ + (1 − α)β̃}

]
= Cα{αβ̂j + (1 − α)β̃j}. (A.11)

Note that

X ′
j

[
Y − X{αβ̂ + (1 − α)β̃}

]
= αX ′

j

(
Y − Xβ̂

)
+ (1 − α)X ′

j

(
Y − Xβ̃

)

= αC1β̂j + (1 − α)C0β̃j.

Therefore, we can re-write (A.11) as

α(C1 − Cα)β̂j = (1 − α)(Cα − C0)β̃j (A.12)

Assume that the conclusion of Lemma 10.3 is not true. We intend to derive a contradiction

by applying (A.12) to two indexes j1, j2 ∈ E which are defined in the following.

Choose j1 such that β̂j1 6= cβ̃j1 for any scalar c. According to (A.12), Cα must be a

constant as α varies in [0, 1]. By the definition of Cα, we conclude that λα ∝ ||αβ̂j1 + (1 −
α)β̃j1 ||. In other words,

λ2
α = η||β̂j1 − β̃j−1||2α2 + 2η(β̂j1 − β̃j1)

′β̃j1α + η||β̃j1 ||2 (A.13)

for some positive constant η.

In order to define j2, assume that λ1 > λ0 without loss of generality. Then
∑

j
√

pj||β̃j|| >
∑

j
√

pj||β̂j||. There exists a j2 such that
√

pj||β̃j2 || >
√

pj||β̂j2 ||. Then for j2, C1 > C0.

Assume that C1 − Cα 6= 0 without loss of generality. By (A.12),

β̂j2 =
(1 − α)(Cα − C0)

α(C1 − Cα)
β̃j2 ≡ cj2β̃j2 .
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Therefore,

Cα =
(1 − α)C0 + cj2αC1

1 − α + cj2α
(A.14)

Now by definition of Cα,

λα = (αC1cj2 + (1 − α)C0)||β̃j2 || (A.15)

Combining (A.13) and (A.15), we conclude that

{(β̂j1 − β̃j1)
′β̃j1}2 = ||β̂j1 − β̃j−1||2||β̃j1 ||2,

which implies that β̂j1/||β̂j1 || = β̃j1/||β̃j1 ||. This contradicts our definition of j1. The proof

is now completed.

Proof of Theorem 6.1 Write β̂j = (β̂j1, . . . , β̂jpj
) and βLS

j = (βLS
j1 , . . . , βLS

jpj
)′. For any β̂ that

depends on Y only through βLS, Since X ′X = I, by the chain rule we have

tr

(
∂Ŷ

∂Y

)

= tr{∂(Xβ̂)

∂Y
}

= tr{∂(Xβ̂)

∂βLS

∂βLS

∂Y
}

= tr

(

X
∂β̂

∂βLS
X ′

)

= tr

(

X ′X
∂β̂

∂βLS

)

= tr

(
∂β̂

∂βLS

)

=
J∑

j=1

pj∑

i=1

(
∂β̂ji

∂βLS
ji

)

(A.16)

Recall that the group LASSO or the group LARS solution is given by

β̂ji =

(

1 − λ
√

pj

||βLS
j ||

)

+

βLS
ji . (A.17)

It implies

∂β̂ji

∂βLS
ji

= I
(
||βLS

j || > λ
√

pj

)


1 −
λ
√

pj{||βLS
j ||2 −

(
βLS

ji }2
)

||βLS
j ||3



 . (A.18)
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Combining (A.16) and (A.18), we have

n∑

l=1

∂Ŷl

∂Yl

=
J∑

j=1

I
(
||βLS

j || > λ
√

pj

)
{pj −

λ
√

pj(pj − 1)

||βLS
j || }

=
J∑

j=1

I
(
||βLS

j || > λ
√

pj

)
+

J∑

j=1

(

1 −
λ
√

pj

||βLS
j ||

)

+

(pj − 1)

= d̃f .

Similarly, the nonnegative garrote solution is given as

β̂ji =

(

1 − λpj

||βLS
j ||2

)

+

βLS
ji . (A.19)

Therefore,

∂β̂ji

∂βLS
ji

= I
(
||βLS

j || >
√

λpj

)


1 −
λpj{||βLS

j ||2 − 2
(
βLS

ji

)2}
||βLS

j ||4



 . (A.20)

As a result of (A.16) and (A.20),

n∑

l=1

∂Ŷl

∂Yl

=
J∑

j=1

I
(
||βLS

j || >
√

λpj

)
{pj −

λpj(pj − 2)

||βLS
j ||2 }

= 2
J∑

j=1

I
(
||βLS

j || >
√

λpj

)
+

J∑

j=1

(

1 − λpj

||βLS
j ||2

)

+

(pj − 2)

= d̃f ,

where the last equality holds because dj =
(
1 − λpj/||βLS

j ||2
)

+
.

Now, an application of Stein’s identity yields

df =
n∑

l=1

cov(Ŷl, Yl)/σ
2 = E

[
n∑

l=1

∂Ŷl

∂Yl

]

= E
[
d̃f
]
.
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